

HHS Public Access

Author manuscript

Pharmacogenomics J. Author manuscript; available in PMC 2015 December 18.

Published in final edited form as: Pharmacogenomics J. 2014 April; 14(2): 160–170. doi:10.1038/tpj.2013.13.

Higher frequency of genetic variants conferring increased risk for ADRs for commonly used drugs treating cancer, AIDS and tuberculosis in persons of African descent

F Aminkeng¹. CJD Ross². SR Rassekh³. LR Brunham^{1,4}. J Sistonen^{1,5}. M-P Dube⁶. M Ibrahim⁷, TB Nyambo⁸, SA Omar⁹, A Froment¹⁰, J-M Bodo¹¹, S Tishkoff^{12,13}, BC Carleton^{2,13}, MR Hayden^{1,4}, and The Canadian Pharmacogenomics Network for Drug Safety Consortium¹⁴

¹Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, Vancouver, British, Columbia, Canada ²Division of Translational Therapeutics, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada ³Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada ⁴Translational Laboratory in Genetic Medicine, Department of Medicine, National University of Singapore and Association for Science, Technology and Research (A*STAR), Singapore ⁵Inselspital, Bern University Hospital and University of Bern, Bern, Switzerland ⁶Montreal Heart Institute Research Centre and Universite de Montreal, Montreal, Quebec, Canada ⁷Department of Molecular Biology, Institute of Endemic Diseases, University of Khartoum, Khartoum, Sudan ⁸Department of Biochemistry, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania ⁹Kenya Medical Research Institute, Center for Biotechnology Research and Development, Nairobi, Kenya ¹⁰UMR 208, IRD-MNHN, Musée de l'Homme, Paris, France ¹¹Ministère de la Recherche Scientifique et de l'Innovation, Yaoundé, Cameroon ¹²Departments of Genetics and Biology, University of Pennsylvania, Philadelphia, PA, USA

Abstract

There is established clinical evidence for differences in drug response, cure rates and survival outcomes between different ethnic populations, but the causes are poorly understood. Differences in frequencies of functional genetic variants in key drug response and metabolism genes may significantly influence drug response differences in different populations. To assess this, we genotyped 1330 individuals of African (n = 372) and European (n = 958) descent for 4535 singlenucleotide polymorphisms in 350 key drug absorption, distribution, metabolism, elimination and toxicity genes. Important and remarkable differences in the distribution of genetic variants were

CONFLICT OF INTEREST

Correspondence: Professor MR Hayden, Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British Columbia, 950 West 28th Avenue, Vancouver, British Columbia, V5Z 4H4 Canada. mrh@cmmt.ubc.ca.

These authors are co-senior authors to this work.

¹⁴A full list of members is provided in Appendix.

The authors declare no conflict of interest.

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj)

Keywords

pharmacogenomic diversity; genetic ancestry; drug response; ADRs

INTRODUCTION

Drug response, cure rates and survival outcomes for many diseases have improved significantly over the last few decades, but not all populations have benefited equally from this progress. In particular, there is growing clinical evidence concerning differences in the incidence of adverse drug reactions (ADRs) by population.¹ ADRs represent the fourth leading cause of morbidity and mortality in developed countries, with direct medical costs of US\$137–177 billion annually in the USA alone.^{2–4} The cost and contribution of ADRs to patient morbidity, hospitalization and mortality in African countries are not known.

Several observations have pointed to the fact that African and Hispanic populations are generally at increased susceptibility to ADRs, and have poorer survival and response rates for many diseases and medications when compared with European and Asian populations.^{5,6} For example, the rate of cisplatin-related toxicity has been shown to be significantly higher amongst African Americans compared with western Europeans (47.6% vs 8.3%, P=0.007)⁷ The maximum tolerable dose of cisplatin is 40% lower in the South African Black population compared with western countries (25 vs 40 mg m⁻² per week).⁸ The risk and frequency of cardiotoxicity and congestive heart failure (CHF) after anthracycline treatment has been reported to be significantly higher in African compared with European populations (1.7-fold greater relative risk and 7% vs 2.4% frequency, P<0.027, odds ratio = 2.93).^{9,10} African ancestry has also been associated with increased likelihood of anthracycline dose reduction, early termination of treatment and decreased survival rates when compared with Europeans.¹¹ African populations also have poorer survival and response rates,¹² and experience significantly more frequent hematologic toxicities of leukopenia and anemia when compared with Europeans (P<0.006) after treatment with 5-fluorouracil (5-FU).¹³

The causes of these differences are poorly understood but could be due to genetic, clinical and/or environmental factors. The recent identification of the genetic basis of drug response and ADRs for many agents now makes it possible to identify the genetic causes of drug response differences at a population level. In the current study, we tested the hypothesis that the differences in frequencies of genetic variants in key genes involved in drug biotransformation may underlie these differences in ADR rates and response to therapy by population. Studies on pharmacogenomic diversity in African populations are underrepresented in published genomic and pharmacogenomic research and this study begins to address this deficiency.^{14–15}

MATERIALS AND METHODS

Study population

Our study population (n = 1330) consisted of individuals of African (n = 372) and European (n = 958) descent. Individuals of African ancestry were drawn from indigenous ethnically, geographically, linguistically and culturally diverse African populations originating from Eastern (Kenya and Tanzania), Central (Cameroon and Chad), Western (Nigeria), Saharan (Sudan),¹⁴ and Southern (South Africa) Africa, recruited via field expeditions (Table 1). Europeans were from North America (Canada) recruited via the Canadian Pharmacogenomics Network for Drug Safety, a multicenter active drug surveillance and pharmcogenomics consortium.¹⁷ All genetic ancestries were self-reported and verified by principal component analysis. All participants were verified for cryptic relatedness using identity by descent estimation, and no duplicates (>99% identity) or related individuals (86–98% identity) were found.

This study was approved by the ethics committees of the universities and institutions participating in the scientific projects of the Canadian Pharmacogenomics Network for Drug Safety and the ethics committee of the University of Pennsylvania. Written informed consent was obtained from all participants or from the parents or legal guardians in case of minors in accordance with the Helsinki Declaration as revised in 2008 (http://www.wma.net/en/30publications/10policies/b3/index.html, accessed 4 March 2013).

Pharmacogenomic assay design and variant clinical annotation

Our assay was designed to genotype for 4535 single-nucleotide polymorphisms (SNPs) in 350 key genes involved in drug biotransformation, drug response and ADRs, and included transporters, enzymes, receptors, ion channels, transcription factors and drug targets. The candidate genes were selected based on their physiological roles in drug absorption, distribution, metabolism, elimination and toxicity. Genetic variations in the absorption, distribution, metabolism, elimination and toxicity genotyping panel were selected to have the maximum set of informative markers to assay the candidate genes. Tagging SNPs were selected by IdSelect algorithm,¹⁸ using data from the International HapMap consortium.¹⁹ Functional SNPs were identified via publicly available databases (PharmGKB, HuGENet, ALFRED) and also from published information about their role in protein structure and/or function. Clinical annotations were curated from PharmGKB,²⁰ Hiv-pharmacogenomics.org,²¹ and published studies²²⁻²⁶

Genotyping and quality control

Genomic DNA was extracted from blood, saliva or buccal swab samples using the QIAamp DNA purification system (Qiagen, Toronto, Ontario, Canada) and quantified by Quant-iT PicoGreen assay (Invitrogen, Eugene, OR, USA), according to the manufacturer's protocols. A total of 1330 DNA samples were genotyped using a customized Illumina GoldenGate SNP genotyping assay (Illumina, San Diego, CA, USA). Genotypes were called with the Illumina Genome Studio software package (Illumina). All samples in the study cohort were used to determine cluster boundaries in order to maximize clustering accuracy. The clusters were then evaluated using automated scripts, while the ambiguous ones were evaluated

manually. Twenty samples and 326 SNPs with call rates below 90% were excluded from the analyses (average call rate for included samples = 95.0% and SNPs = 99.8%). Quality control analysis was performed by date of genotyping and by plate to check for systematic errors in the generated data set. No systematic errors were found. After quality control, 1310 samples and 4209 SNPs remained for further analyses.

Statistical analyses

Statistical analyses were performed using SVS/HelixTree 7.6.8 (Golden Helix, Bozeman, MT, USA). Fisher's exact test was used for comparing allele frequencies among populations and an ANOVA F-test was used to explore the pharmacogenomic diversity in African populations. The type-I error rate of 0.05 was used as a significance threshold after Bonferroni correction for 4209 tests.

RESULTS

Pharmacogenomic diversity and population ancestry

Distribution of pharmacogenomic polymorphisms—We compared allele frequencies between African and European populations (Supplementary Table 1). Several variants in the cytochrome P4503A (*CYP3A*) family showed the most significant differences and were more frequent in African compared with European populations: *CYP3A* rs4646450 –90.34% vs 16.77%, *P*=6.93E-274; *CYP3A4* rs2740574 –66.25% vs 3.25%, *P*=3.95E-257; *CYP3A4* rs2242480 –77.59% vs 11.14%, *P*=2.92E-231; *CYP3A4* rs4646437 – 77.73% vs 11.45%, *P*=1.43E-229; *CYP3A5* rs776746 – 74.37% vs 10.13%, *P*=3.60E-221; and *CYP3A* rs6945984 – 76.89% vs 12.72%, *P* = 3.52E-212 (Table 2). Striking differences were also observed for other cytochrome P450 variants and variants in solute carrier and ATP-binding cassette transporters.

Most ADR-associated risk variants or variants associated with poor response or shortened survival rates were more frequent in African populations compared with Europeans (Supplementary Table 2). Specific examples of clinically important differences between African and European populations focusing on cancer, antiretroviral and antimicrobial pharmacogenomics are provided here, while other examples can be found in the Supplementary Material of this manuscript (Supplementary Tables 1–2).

Pharmacogenomic diversity in cancer therapy

Anthracyclines and related substances—*UGT1A6* rs17863783, *ABCC2* rs8187694, *ABCC2* rs8187710, *ABCB1* rs2235047 and *ABCC1* rs4148350 have been associated with the risk of anthracycline-induced cardiotoxicity (ACT) and CHF,^{22,23} while *RAC2* rs13058338, *SULT2B1* rs10426377, *CBR1* rs9024 and *HNMT* rs17645700 have been shown to have a protective effect.^{22,23} Also, *ABCB1* rs2032582 has been clinically linked to improved survival and response rates,²⁶ while *CYP2B6* rs3745274 has been associated with decreased tolerance and survival.²⁷ The distributions of these variants were significantly different between African and European populations (Table 3). *UGT1A6* rs17863783 (12.04% vs 2.78%, *P*=9.75E-15), *ABCC2* rs8187694 (14.29% vs 5.37%, *P*=2.54E-09), *ABCC2* rs8187710 (22.99% vs 5.47%, *P* = 8.87E-31), *ABCB1* rs2235047 (18.21% vs 2.52%,

P=3.84E-36), ABCC1 rs4148350 (13.48% vs 5.43%, P=2.09E-07), RAC2 rs13058338 (10.92% vs 24.97%, P=.09E-12), SULT2B1 rs10426377 (17.51% vs 27.39%, P=4.66E-04), CBR1 rs9024 (1.40% vs 12.46%, P=1.73E-19), HNMT rs17645700 (4.76 vs 20.17, P=4.57E-22), ABCB1 rs2032582 (3.78% vs 45.10%, P=1.87E-106) and CYP2B6 rs3745274 (77.73% vs 24.97%, P=4.34E-131). Variants associated with increased risk of ACT and CHF and decreased tolerance and survival were more frequent in African populations, while those associated with protection against ACT and CHF and improved survival and response rates were less frequent.

Cisplatin and platinum compounds—*COMT* rs9332377 has been associated with increased risk of cisplatin-induced hearing loss,²⁸ MTR rs1805087 associated with reduced risk of cisplatin-induced toxicity, *XRCC1* rs25487 associated with decreased risk of severe neutropenia when treated with platinum compounds (cisplatin, carboplatin, oxaliplatin and platinum)²⁹ and *MTHFR* rs1801133 clinically linked to increased response to platinum compounds.³⁰ The allele frequencies of these pharmacogenomic variants were significantly different between African and European populations (Table 4). *COMT* rs9332377 (32.68% vs 16.82%, *P*=5.40E-14), *XRCC1* rs25487 (14.85% vs 35.07%, *P*=.37E-22), *MTR* rs1805087 (0.27.17 vs 18.68, *P*=.0142) and *MTHFR* rs1801133 (6.86% vs 34.77%, *P*=. 57E-51). Pharmacogenomic variants associated with increased risk of toxicity related to platinum compounds were more common in African populations, while variants associated with decreased risk were less frequent in African populations.

Fluororuracil—The majority of 5-FU-induced toxicity are related to the deficiency of dihydropyrimidine dehydrogenase, an enzyme, which metabolizes 5-FU. The common mutations in the dihydropyrimidine dehydrogenase gene—*DPYD* (*DPYD* rs1801265 and *DPYD* rs2297595) have been associated with fluoropyrimidine-related toxicity in cancer patients,^{31,32} while *MTHFR* rs1801133 has been linked to improved survival and response rates.³³ The distributions of these mutations were different in African and European populations (Table 5). *DPYD* rs1801265 –48.88% vs 22.19%, *P*=4.46E-35; *DPYD* rs2297595 –19.75% vs 10.19%, *P*=1.30E-06; *MTHFR* rs1801133 –6.86% vs 34.77%, *P*=2.57E-51. Pharmacogenomic variants associated with increased risk of 5-FU-induced toxicity were more frequent in African populations, while MTHFR rs1801133 associated with improved response was less frequent.

Vincristine—Vincristine is a metabolic substrate for CYP3A5. It has been shown that increased risk of vincristine-induced neurotoxicity is associated with low CYP3A5 expression.³⁴ Therefore, mutations in *CYP3A5* may influence the efficacy and toxicity of vincristine. We explored the distribution of *CYP3A5* mutations in African and European populations. Strikingly significant differences were observed for the following *CYP3A5* polymorphisms: *CYP3A5* rs776746 –74.37% vs 10.13%, *P*=3.60E-221; *CYP3A5* rs10224569 – 28%.37% vs 0.0%, *P*=2.39E-121; *CYP3A5* rs10264272 –22.33% vs 0.32%, *P*=2.44E-83; *CYP3A5* rs10249369 – 21.91% vs 0.58%, *P*=1.02E-75; *CYP3A5* rs41303343 – 7.56% vs 0.10% *P*=2.59E-25; *CYP3A5* rs6956305 –9.10% vs 4.41%, *P*=0.0443)—Table 6. Also, significant differences were observed for *MTHFR* rs1801133 (34.77% vs 6.86%,

Pharmacogenomic diversity in antiretroviral and antimycobacterial therapy-

CYP2B6 rs28399499 is associated with Nevirapine-induced hepatotoxicity.²¹ *CYP2B6* rs3745274 is associated with rifampicin-induced liver injury and with efavirenz-induced lowered HDL levels, hepatotoxicity, neurotoxicity, fatigue and sleep disorders and early termination of treatment.²¹ Also, *ABCC2* rs717620, *ABCC2* rs17222723 and *ABCC4* rs1751034 are associated with Tenofovir-induced proximal tubulopathy and kidney tubular dysfunction and *APOE* rs429358 associated with extreme hypertriglyceridemia.^{20,21} The allele frequencies of these variants were significantly higher in the African compared with European populations (*CYP2B6* rs28399499 – 5.20% vs 0.052%, *P*=7.04E-17; *CYP2B6* rs3745274 –77.73% vs 24.97%, *P*=4.34E-131; *ABCC2* rs717620 –19.77% vs 3.24%, *P*=4.54E-28; *ABCC2* rs17222723 – 14.29% vs 5.46%, *P*=5.94E-09; *ABCC4* rs1751034 –30.95% vs 17.79%, *P*=4.77E-09; *APOE* rs429358 –24.86% vs 13.27%, *P*=5.75E-08 –Table 7), which would be compatible with increased frequency of ADRs with these drugs.

Pharmacogenomic diversity among African populations

We characterized and compared allele frequencies in five different African populations (Supplementary Tables 3–5). The F-statistics and P-values revealed high pharmacogenomic diversity among African populations. The most clinically relevant diversity was observed for *VKORC1* rs7294 (*P*=8.93E-21), which is associated with warfarin dosage requirement³⁷ (Table 8). Other top clinically annotated variations include *VKORC1* rs8050894 (*P*=8.92E-07) for warfarin dosage³⁸ and several cytochrome P450 variants associated with response to immunosuppressive drugs (*CYP2B6* rs2279343 - *P*=.46E-20 for cyclophosphamide-induced mucositis,³⁹ *CYP2B6* rs8192709 - *P*=.0167 for cyclophosphamide-induced hemorr-hagic cystitis³⁹ and *CYP3A5* rs776746 - *P*=.14E-09 for cyclospo-rine dosage requirements²⁰).

Pharmacogenetic variant frequencies including the frequencies of the CYP enzymes were observed to be remarkably variable within African populations as demonstrated by the following examples (Table 9 and Supplementary Table 3):

Antharcycline—The *UGT1A6*4* haplotype associated with the risk of ACT and clinical heart failure was more frequent among Saharan (18.4%), Southern (12.9%) and Eastern (12.8%) Africans compared with Central (9.9%) and Western (8.8%) Africans.

Cisplatin—*COMT* rs9332377, which is associated with increased risk of cisplatin-induced hearing loss, was less common among Western (20.6%) and Saharan (23.7%) Africans compared with Eastern (35.2%), Southern (33.0%) and Central (32.3%) Africans.

Antiretroviral therapy—*ABCC4* rs1751034 is associated with Tenofovir-induced proximal tubulopathy and kidney tubular dysfunction. This variant is very frequent among Western Africans (44.1%), intermediate among Central (32.5%), Eastern (30.5%) and Southern (29.2%) Africans, and comparatively less frequent in Saharan Africans (23.7%). Also, *CYP2B6* rs28399499, which is associated with Nevirapine-induced hepatotoxicity is rare among Saharan (0.0%), Central (1.2%) and Western (2.9%) Africans, and relatively more common in Southern (8.0%) and Eastern (6.7%) Africans.

DISCUSSION

In this manuscript, we have chosen to focus on antineoplastic, antiretroviral and antimycobacterial commonly used drugs from the WHO Model List of Essential Medicines. Cancer, HIV/AIDS and tuberculosis and their associated ADRs are major public health problems and have become the primary focus in health-care. In general, a higher frequency of genetic variants conferring increased risk to ADRs for different and commonly used antineoplastic, antiretroviral and antituberculosis drugs was evident in African populations.

Anthracyclines are a group of very efficacious chemotherapeutic agents and have been part of the backbone of therapy worldwide including Africa for the treatment of many cancers including leukemia, lymphoma, sarcomas, Wilms' tumor, hepato-blastoma, and uterine, ovarian, lung and breast cancers. They are used to treat over 70% of all childhood malignancies, as well as 50-90% of breast cancer patients each year.⁴⁰ Their clinical utility is primarily limited by a highly individually variable, cumulative dose-dependent, cardiac toxicity, manifesting as asymptomatic cardiac dysfunction in up to 57% of treated patients^{41,42} and restrictive or dilated cardiomyopathy resulting in CHF in up to 16% of treated patients.⁴³ African populations are more sensitive to ACT and CHF when compared with Europeans (1.7-fold greater relative risk; frequency -7% vs 2.4%, P<0.027, odds ratio = 2.93).^{9,10} The enrichment of genetic risk factors for ACT and CHF such as UGT1A6 rs17863783, ABCC2 rs8187694, ABCC2 rs8187710, ABCB1 rs2235047 and ABCC1 rs4148350, in African populations suggests that these genetic differences may partially account for the increased sensitivity to ACT and CHF in African populations. Also, the enrichment of pharmacogenetic factors such as CYP2B6 rs3745274 associated with poor drug tolerance and poor survival rates²⁷ could contribute to the reported increased likelihood of dose reduction, early termination of treatment and decreased survival rates in African populations.¹¹

Cisplatin, carboplatin and oxaliplatin are all platinum compounds that have excellent antineoplastic properties. Cisplatin is the drug of choice for solid tumors including hepatoblastoma, osteosarcoma, neuroblastoma and ovarian, central nervous system, testicular, cervical, lung, bladder, head and neck tumors.⁴⁴ Major complications include ototoxicity, nephrotoxicity, neurotoxicity and myelotoxicity. Irreversible hearing loss (ototoxicity) occurs in 10–25% of treated adults, 50% of patients treated with high doses (>400mgm⁻²) and 41–61% of treated children^{45–47} Cisplatin-related toxicity is more frequent in African populations when compared with the European population (47.6% vs 8.3%, P = 0.007)⁷ Also, the maximum tolerable dose is 40% lower in African populations (25 vs 40 mg m⁻² per week).⁸ In the current study, an overrepresentation of *COMT*

rs9332377 (32.58% vs 16.82%) variants associated with increased risk of hearing loss²⁸ and a depletion of *XRCC1* rs25487 (14.85% vs 35.07%) associated with protection against cisplatin-induced neutropenia,²⁹ in African populations, was evident. This correlates with the reported increased frequency of cisplatin-induced toxicity in these populations and suggests that these differences in allele frequency may contribute to the increased ADR rates in these populations.

5-FU is a very effective drug commonly used in the treatment of advanced stage colon cancer and several other types of cancer including, breast, esophageal and stomach cancers. About 30% of 5-FU-treated patients suffer from severe and sometimes deadly toxicity including hematologic toxicities of leukopenia and anemia, myelosuppression, diarrhea, nausea, vomiting, mucositis and dermatitis.¹ Poorer survival and decreased response rates,¹² and more frequent toxicities have been reported in African Americans when compared with Europeans (P<0.006).¹³ An enrichment of risk factors for dihydropyrimidine dehydrogenase deficiency such as the *DPYD* variants (rs1801265 –48.88% vs 22.19% and rs2297595 – 19.75% vs 10.19%) and a decrease in the frequency of *MTHFR* rs1801133 (6.9% vs 34.8%) linked to increased therapeutic response was evident³³ in Africans compared with Europeans. These genetic findings could at least partially explain differences in ADR rates and drug responsiveness between these two populations.

Vincristine is a commonly prescribed vinca alkaloid and is used in the treatment of both hematological and solid malignancies. In the US alone, vincristine is used to treat over 50% of all childhood cancers and ~30 000 adults cancer patients.³⁴ Vincristine-induced neurotoxicity has been found in 34.8% of Europeans vs 4.8% of African Americans (P = 0.007). Europeans have been shown to have a higher average grade of neurotoxicity (2.72 vs 1, P<0.0001) and require dose reduction (4% vs 0.1%, P<0.0001) and dose omission (1.2% vs 0.1%, P<0.01) when compared with African populations.⁴⁸ The biotransformation of vincristine is CYP3A5-dependent.¹ The current study found an increased frequency of CYP3A5 polymorphisms in African populations, which correlates with the reported increased in the expression of CYP3A5 in these populations when compared with Europeans (10–30% vs 60–70%).^{1,49–51} Increased CYP3A5 expression would increase the clearance of vincristine, thus lowering the concentration of the drug in the body and decrease the risk of vincristine-related toxicity in African populations. This could possibly be a mechanism by which African populations are protected from vincristine-related toxicity.

African populations experience more frequent antiretroviral and antimycobacterial druginduced toxicities compared with Europeans. The incidence of nevirapine-induced hepatotoxicity is 17% among South Africans Blacks compared with 1–10% in Europeans, while 10% of Africans discontinue efavirenz therapy because of persistent toxicity compared with only 3% of Europeans.⁵² Also, 69% of Africans compared with 50% of European patients experience neurotoxicity after initiation of efavirenz therapy.⁵² This correlates with an overrepresentation of pharmacogenetic risk variants such as *ABCC2* rs717620, *ABCC2* rs17222723, *ABCC4* rs1751034, *CYP2B6* rs28399499, *CYP2B6* rs3745274, *APOE* rs429358 and *CYP2B6* rs3745274 in Africans compared with Europeans as observed in the current study. *CYP2B6* rs3745274 is also associated with rifampicininduced liver injury, an important drug used in antituberculous therapy.^{20,21} Even though

differences in the incidence between Africans and Europeans are currently not known, this result indicates the possibility of such differences, which should be investigated in the future.

Overall, *CYP3A* variants showed the most significant differences and were more frequent in Africans compared with Europeans. *CYP3A* enzymes are involved in the metabolism of ~40–60% of all drugs.⁵³ Their expression varies significantly by population, with increased expression of *CYP3A5* in particular reported in African compared with European populations (10%–30% of Europeans vs 60%–70% of Africans).^{49–51} This observation is consistent with the observed dramatic enrichment of *CYP3A5* variants in African compared with European populations in the current study. Renbarger has postulated that *CYP3A5* gene region could explain most of the drug response differences by population.⁴⁸ Other striking differences were observed with ATP-binding cassette and solute carrier transporters, indicating the additional contribution of other genes. In general, we observed an enrichment of genetic variants, which could underlie an enhanced predisposition to several ADRs and poor response rates in Africans compared with Europeans.

The current study also observed important differences among the African populations, which could translate to significant differences in drug efficacy and safety profiles, and also in the dose required to achieve the desired therapeutic effect in different African populations. This is consistent with the reported highly variable distribution of ABCB1, VKORC1 and CYP enzymes among African populations.^{54,55} This pharmacogenomic heterogeneity across different ethnic groups and geographical regions within African populations highlights the challenge faced by regulatory agencies in African countries when assessing new drug applications especially when there is minimal or no data from local clinical trials. Therefore, an important area of focus for improving drug distribution and access in African populations is the development and effective use of pharmacovigilance systems to monitor drug response in treated patients in order to avoid, in particular, serious and permanently disabling ADRs. Also, local trials to assess the frequency of ADRs will be important.

The current study places emphasis on the importance of including different populations in the development of biomarkers for pharmacogenetic testing, clinical practice guidelines, and clinical trials. To the best of our knowledge, it is the largest study of pharmacokinetic and pharmcodynamic genetic markers to dissect the pharmacogenomic variation at the level of individual populations and the first to have included such a large number of individuals recruited from different indigenous African populations. This study clearly demonstrates that clinical trials and safety studies, which are typically done in European populations, cannot be extrapolated to African populations. Furthermore, it also highlights the compounded challenge of population heterogeneity with respect to the delivery of health-care services in Canada and the USA. This type of study can inform clinical practice and clinical trials and is imperative for tailoring therapy towards individual populations. Our study population is not the complete representative sample of all African and European populations, but points to the need for local studies of genetic variants contributing to ADRs within all populations.

We have shown that there are important differences in the distribution of genetic variants in key drug biotransformation genes by population. These could translate to significant differences in drug response and toxicity rates. African populations have a pharmacogenetic enrichment to ADR susceptibility when compared with Europeans, which could explain the increased susceptibility and conferring poorer survival and response rates in these populations. This observation highlights the need for further investment in active drug surveillance systems, which should be central to all health-care systems to ensure each patient achieves maximal therapeutic benefit and minimal toxicity. Even though studies of pharmacogenomic differences among populations predicts the existence of drug response differences by populations, some of which have already being elucidated, a prospective evaluation of the relationship between pharmacogenomic diversity and drug response variability will be warranted to validate these findings. As population diversity, especially in Canada and the USA continues to increase, the need for information on population-specific genetic variation for the implementation of personalized medicine will become more important.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

We acknowledged the participation of all those who took part in this study from the different Africa countries and Canada. We also acknowledge the contributions of Bill Beggs and other members of the Tishkoff Lab (University of Pennsylvania) and the Canadian Pharmacogenomics Network for Drug Safety consortium (University of British Columbia) for the enrolment of the study participants and for the handling of the samples, assays and records. This work was supported by the Canadian Institutes of Health Research, Child and Family Research Institute (Bertram Hoffmeister Postdoctoral Fellowship Award for Folefac Aminkeng), Canada Foundation for Innovation, Genome British Columbia. Additional funding was provided by Child & Family Research Institute (Vancouver, BC), Faculty of Medicine of the University of British Columbia, The Canadian Gene Cure Foundation and C17 Research Network and Childhood Cancer Foundation-Candlelighters Canada, as well as NSF (BCS-0827436) and NIH (R01GM076637, 8 DP1 ES022577-04) grants to S.A.T.

REFERENCES

- 1. O'Donnell PH, Dolan ME. Cancer pharmacoethnicity: ethnic differences in susceptibility to the effects of chemotherapy. Clin Cancer Res. 2009; 15:4806–4814. [PubMed: 19622575]
- Phillips KA, Veenstra D, Van Bebber S, Sakowski J. An introduction to cost-effectiveness and costbenefit analysis of pharmacogenomics. Pharmacogenomics. 2003; 4:231–239. [PubMed: 12718713]
- Ernst FR, Grizzle AJ. Drug-related morbidity and mortality: updating the cost-of-illness model. J Am Pharm Assoc (Wash). 2001; 41:192–199. [PubMed: 11297331]
- Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA. 1998; 279:1200–1205. [PubMed: 9555760]
- 5. Yang JJ, Cheng C, Devidas M, Cao X, Fan Y, Campana D, et al. Ancestry and pharmacogenomics of relapse in acute lymphoblastic leukemia. Nat Genet. 2011; 43:237–241. [PubMed: 21297632]
- Kadan-Lottick NS, Ness KK, Bhatia S, Gurney JG. Survival variability by race and ethnicity in childhood acute lymphoblastic leukemia. JAMA. 2003; 290:2008–2014. [PubMed: 14559954]
- Shord SS, Thompson DM, Krempl GA, Hanigan MH. Effect of concurrent medications on cisplatininduced nephrotoxicity in patients with head and neck cancer. Anti-cancer drugs. 2006; 17:207– 215. [PubMed: 16428940]

- Nyongesa C, Ruff P, Donde B, Kotzen J. A phase I study of concurrent cisplatin chemotherapy in patients with carcinoma of the cervix receiving pelvic radiotherapy. Int J Gynecol Cancer. 2006; 16:1614–1619. [PubMed: 16884375]
- Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol. 1997; 15:1544–1552. [PubMed: 9193351]
- Hasan S, Dinh K, Lombardo F, Kark J. Doxorubicin cardiotoxicity in African Americans. J Natl Med Assoc. 2004; 96:196–199. [PubMed: 14977278]
- Hershman D, McBride R, Jacobson JS, Lamerato L, Roberts K, Grann VR, et al. Racial disparities in treatment and survival among women with early-stage breast cancer. J Clin Oncol. 2005; 23:6639–6646. [PubMed: 16170171]
- Polite BN, Dignam JJ, Olopade OI. Colorectal cancer model of health disparities: understanding mortality differences in minority populations. J Clin Oncol. 2006; 24:2179–2187. [PubMed: 16682737]
- McCollum AD, Catalano PJ, Haller DG, Mayer RJ, Macdonald JS, Benson AB 3rd, et al. Outcomes and toxicity in african-american and caucasian patients in a randomized adjuvant chemotherapy trial for colon cancer. J Natl Cancer Inst. 2002; 94:1160–1167. [PubMed: 12165641]
- Tishkoff SA, Reed FA, Friedlaender FR, Ehret C, Ranciaro A, Froment A, et al. The genetic structure and history of Africans and African Americans. Science. 2009; 324:1035–1044. [PubMed: 19407144]
- Campbell MC, Tishkoff SA. African genetic diversity: implications for human demographic history, modern human origins, and complex disease mapping. Ann Rev Genomics Hum Genet. 2008; 9:403–433. [PubMed: 18593304]
- Lachance J, Vernot B, Elbers CC, Ferwerda B, Froment A, Bodo JM, et al. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse african hunter-gatherers. Cell. 2012; 150:457–469. [PubMed: 22840920]
- Carleton B, Poole R, Smith M, Leeder J, Ghannadan R, Ross C, et al. Adverse drug reaction active surveillance: developing a national network in Canada's children's hospitals. Pharmacoepidemiol Drug Saf. 2009; 18:713–721. [PubMed: 19507171]
- Carlson CS, Eberle MA, Rieder MJ, Yi Q, Kruglyak L, Nickerson DA. Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. Am J Hum Genet. 2004; 74:106–120. [PubMed: 14681826]
- International HapMap Consortium. A haplotype map of the human genome. Nature. 2005; 437:1299–1320. [PubMed: 16255080]
- 20. PharmGKB. [Accessed 10th of December 2012] The Pharmacogenomics Knowledgebase (PharmGKB) is a comprehensive resource that curates knowledge about the impact of genetic variation on drug response for clinicians and researchers. http://www.pharmgkborg.
- 21. [Accessed 10 December, 2012] HIV-pharmacogenomics.org. http://www.hiv-pharmacogenomics.org.
- Visscher H, Ross CJ, Rassekh SR, Barhdadi A, Dube MP, Al-Saloos H, et al. Phar-macogenomic prediction of anthracycline-induced cardiotoxicity in children. J Clin Oncol. 2012; 30:1422–1428. [PubMed: 21900104]
- Wojnowski L, Kulle B, Schirmer M, Schluter G, Schmidt A, Rosenberger A, et al. NAD(P)H oxidase and multidrug resistance protein genetic polymorphisms are associated with doxorubicininduced cardiotoxicity. Circulation. 2005; 112:3754–3762. [PubMed: 16330681]
- Blanco JG, Sun CL, Landier W, Chen L, Esparza-Duran D, Leisenring W, et al. Anthracyclinerelated cardiomyopathy after childhood cancer: role of polymorphisms in carbonyl reductase genes--a report from the Children's Oncology Group. J Clin Oncol. 2012; 30:1415–1421. [PubMed: 22124095]
- 25. Blanco JG, Leisenring WM, Gonzalez-Covarrubias VM, Kawashima TI, Davies SM, Relling MV, et al. Genetic polymorphisms in the carbonyl reductase 3 gene CBR3 and the NAD(P)H:quinone oxidoreductase 1 gene NQO1 in patients who developed anthracycline-related congestive heart failure after childhood cancer. Cancer. 2008; 112:2789–2795. [PubMed: 18457324]

- 26. Maggini V, Buda G, Martino A, Presciuttini S, Galimberti S, Orciuolo E, et al. MDR1 diplotypes as prognostic markers in multiple myeloma. Pharmacogenet Genomics. 2008; 18:383–389. [PubMed: 18408561]
- Bray J, Sludden J, Griffin MJ, Cole M, Verrill M, Jamieson D, et al. Influence of pharmacogenetics on response and toxicity in breast cancer patients treated with doxorubicin and cyclophosphamide. British J Cancer. 2010; 102:1003–1009.
- Ross CJ, Katzov-Eckert H, Dube MP, Brooks B, Rassekh SR, Barhdadi A, et al. Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nat Genet. 2009; 41:1345–1349. [PubMed: 19898482]
- Khrunin AV, Moisseev A, Gorbunova V, Limborska S. Genetic polymorphisms and the efficacy and toxicity of cisplatin-based chemotherapy in ovarian cancer patients. Pharmacogenomics J. 2010; 10:54–61. [PubMed: 19786980]
- Cui LH, Yu Z, Zhang TT, Shin MH, Kim HN, Choi JS. Influence of polymorphisms in MTHFR 677 C-->T, TYMS 3R-->2R and MTR 2756 A-->G on NSCLC risk and response to platinumbased chemotherapy in advanced NSCLC. Pharmaco-genomics. 2011; 12:797–808.
- Van Kuilenburg AB, Vreken P, Abeling NG, Bakker HD, Meinsma R, Van Lenthe H, et al. Genotype and phenotype in patients with dihydropyrimidine dehy-drogenase deficiency. Human Genetics. 1999; 104:1–9. [PubMed: 10071185]
- 32. Gross E, Busse B, Riemenschneider M, Neubauer S, Seck K, Klein HG, et al. Strong association of a common dihydropyrimidine dehydrogenase gene polymorphism with fluoropyrimidine-related toxicity in cancer patients. PLoS One. 2008; 3:e4003. [PubMed: 19104657]
- 33. Etienne-Grimaldi MC, Milano G, Maindrault-Goebel F, Chibaudel B, Formento JL, Francoual M, et al. Methylenetetrahydrofolate reductase (MTHFR) gene polymorphisms and FOLFOX response in colorectal cancer patients. Br J Clin Pharmacol. 2010; 69:58–66. [PubMed: 20078613]
- 34. Egbelakin A, Ferguson MJ, MacGill EA, Lehmann AS, Topletz AR, Quinney SK, et al. Increased risk of vincristine neurotoxicity associated with low CYP3A5 expression genotype in children with acute lymphoblastic leukemia. Pediatr Blood Cancer. 2011; 56:361–367. [PubMed: 21225912]
- Patino-Garcia A, Zalacain M, Marrodan L, San-Julian M, Sierrasesumaga L. Methotrexate in pediatric osteosarcoma: response and toxicity in relation to genetic polymorphisms and dihydrofolate reductase and reduced folate carrier 1 expression. J Pediatr. 2009; 154:688–693. [PubMed: 19159907]
- 36. Krajinovic M, Robaey P, Chiasson S, Lemieux-Blanchard E, Rouillard M, Primeau M, et al. Polymorphisms of genes controlling homocysteine levels and IQ score following the treatment for childhood ALL. Pharmacogenomics. 2005; 6:293–302. [PubMed: 16013960]
- 37. Shrif NE, Won HH, Lee ST, Park JH, Kim KK, Kim MJ, et al. Evaluation of the effects of VKORC1 polymorphisms and haplotypes, CYP2C9 genotypes, and clinical factors on warfarin response in Sudanese patients. Eur J Clin Pharmacol. 2011; 67:1119–1130. [PubMed: 21590310]
- Geisen C, Watzka M, Sittinger K, Steffens M, Daugela L, Seifried E, et al. VKORC1 haplotypes and their impact on the inter-individual and inter-ethnical variability of oral anticoagulation. Thromb Haemost. 2005; 94:773–779. [PubMed: 16270629]
- Rocha V, Porcher R, Fernandes JF, Filion A, Bittencourt H, Silva W Jr, et al. Association of drug metabolism gene polymorphisms with toxicities, graft-versus-host disease and survival after HLAidentical sibling hematopoietic stem cell transplantation for patients with leukemia. Leukemia. 2009; 23:545–556. [PubMed: 19005482]
- Kremer LC, Caron HN. Anthracycline cardiotoxicity in children. N Engl J Med. 2004; 351:120– 121. [PubMed: 15247351]
- Kremer LC, van der Pal HJ, Offringa M, van Dalen EC, Voute PA. Frequency and risk factors of subclinical cardiotoxicity after anthracycline therapy in children: a systematic review. Ann Oncol. 2002; 13:819–829. [PubMed: 12123328]
- van der Pal HJ, van Dalen EC, Hauptmann M, Kok WE, Caron HN, van den Bos C, et al. Cardiac function in 5-year survivors of childhood cancer: a long-term follow-up study. Arch Intern Med. 170:1247–1255. [PubMed: 20660845]

- Kremer LC, van Dalen EC, Offringa M, Voute PA. Frequency and risk factors of anthracyclineinduced clinical heart failure in children: a systematic review. Ann Oncol. 2002; 13:503–512. [PubMed: 12056699]
- 44. McKeage MJ. Comparative adverse effect profiles of platinum drugs. Drug Saf. 1995; 13:228–244. [PubMed: 8573296]
- 45. Coradini PP, Cigana L, Selistre SG, Rosito LS, Brunetto AL. Ototoxicity from cisplatin therapy in childhood cancer. J Pediatr Hematol Oncol. 2007; 29:355–360. [PubMed: 17551394]
- 46. Kushner BH, Budnick A, Kramer K, Modak S, Cheung NK. Ototoxicity from high-dose use of platinum compounds in patients with neuroblastoma. Cancer. 2006; 107:417–422. [PubMed: 16779793]
- Knight KR, Kraemer DF, Neuwelt EA. Ototoxicity in children receiving platinum chemotherapy: underestimating a commonly occurring toxicity that may influence academic and social development. J Clin Oncol. 2005; 23:8588–8596. [PubMed: 16314621]
- Renbarger JL, McCammack KC, Rouse CE, Hall SD. Effect of race on vincristine-associated neurotoxicity in pediatric acute lymphoblastic leukemia patients. Pediatr Blood Cancer. 2008; 50:769–771. [PubMed: 18085684]
- 49. Wrighton SA, Brian WR, Sari MA, Iwasaki M, Guengerich FP, Raucy JL, et al. Studies on the expression and metabolic capabilities of human liver cytochrome P450IIIA5 (HLp3). Mol Pharmacol. 1990; 38:207–213. [PubMed: 2385232]
- 50. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001; 27:383–391. [PubMed: 11279519]
- 51. Lee SJ, Usmani KA, Chanas B, Ghanayem B, Xi T, Hodgson E, et al. Genetic findings and functional studies of human CYP3A5 single nucleotide polymorphisms in different ethnic groups. Pharmacogenetics. 2003; 13:461–472. [PubMed: 12893984]
- Subbaraman R, Chaguturu SK, Mayer KH, Flanigan TP, Kumarasamy N. Adverse effects of highly active antiretroviral therapy in developing countries. Clin Infect Dis. 2007; 45:1093–1101. [PubMed: 17879931]
- Vazquez MA. Southwestern Internal Medicine Conference. New advances in immunosuppression therapy for renal transplantation. Am J Med Sci. 1997; 314:415–435. [PubMed: 9413350]
- 54. Dandara C, Lombard Z, Du Plooy I, McLellan T, Norris SA, Ramsay M. Genetic variants in CYP (-1A2, -2C9, -2C19, -3A4 and -3A5), VKORC1 and ABCB1 genes in a black South African population: a window into diversity. Pharmacogenomics. 2011; 12:1663–1670. [PubMed: 22118051]
- 55. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A. Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics. 2009; 19:170–179. [PubMed: 19151603]
- Evans WE. Pharmacogenetics of thiopurine S-methyltransferase and thiopurine therapy. Ther Drug Monit. 2004; 26:186–191. [PubMed: 15228163]
- Krynetski EY, Schuetz JD, Galpin AJ, Pui CH, Relling MV, Evans WE. A single point mutation leading to loss of catalytic activity in human thiopurine S-methyl-transferase. Proc Natl Acad Sci USA. 1995; 92:949–953. [PubMed: 7862671]

APPENDIX

THE CANADIAN PHARMACOGENOMICS NETWORK FOR DRUG SAFETY CONSORTIUM

The Canadian Pharmacogenomics Network for Drug Safety Consortium (Participants are arranged geographically by institution across Canada)—Vancouver, BC, Children's Hospital, Child & Family Research Institute, CMMT, POPi: Michael Hayden, Bruce Carleton, Colin Ross, Stuart MacLeod, Wyeth Wasserman, Craig Mitton, Anne Smith, Claudette Hildebrand, Lucila Castro Pastrana, Reza Ghannadan, Rod Rassekh, Jonathan

Lim, Fudan Miao, Henk Visscher, Kusala Pussegoda, Folefac Aminkeng, Michelle Higginson, Nasim Massah, Mojgan Yazdanpanah, Johanne Sistonen, Ricardo Jimenez, Adrienne Borrie, Ursula Amstutz, Shevaun Hughes, Kaitlyn Shaw; Calgary, Alberta Children's Hospital: Cheri Nijssen-Jordan, David Johnson, Linda Verbeek, Rick Kaczowka, Patti Stevenson, Andrea Hurton; Edmonton, Stollery Children's Hospital: Paul Grundy, Kent Stobart, Bev Wilson, Sunil Desai, Maria Spavor, Linda Churcher, Terence Chow; Winnipeg, Winnipeg Children's Hospital: Kevin Hall, Nick Honcharik, Sara Israels, Shanna Chan, Byron Garnham, Michelle Staub; London, London Health Sciences Centre: Michael Rieder, Becky Malkin; Hamilton, McMaster Children's Hospital: Carol Portwine, Amy Cranston; Toronto, Hospital for Sick Children: Gideon Koren, Shinya Ito, Paul Nathan, Mark Greenberg, Facundo Garcia Bournissen, Miho Inoue, Sachi Sakaguchi, Toshihiro Tanaka, Hisaki Fujii, Mina Ogawa, Ryoko Ingram, Taro Kamiya & Smita Karande; Kingston, Kingston General Hospital: Mariana Silva, Stephanie Willing; Ottawa, Children's Hospital of Eastern Ontario: Régis Vaillancourt, Pat Elliott-Miller, Donna Johnston, Herpreet Mankoo, Elaine Wong, Brenda Wilson, Lauren O'Connor; Health Canada: Maurica Maher; Montreal, Hospital Sainte-Justine: Jean-Francois Bussie`res, Denis Lebel, Pierre Barret, Aure'lie Closon, Eve Coulson; Montreal Heart Institute: Marie-Pierre Dube', Michael Phillips; McGill University Health Centre-Montreal Children's Hospital: Nada Jabado, Anelise Espirito Santo, Martine Nagy; McGill University: Denise Avard; Halifax, IWK Health Centre: Margaret Murray, Darlene Boliver, Marilyn Tiller and Carolanne Osborne.

Author Manuscript

Table 1

Origin and characteristics of study Population

Population	Country	Ethnic group	Subsistence	Latitude	Longitude	Language family	Language major subgrouping	Sample size
North America	Canada	Europeans				English	Canadian English	958
Central Africa	Cameroon	Fulani	Herder	6	13.5	Niger-Kordofanian	Senegambian	19
		Lemande	Farmer	4.5	11	Niger-Kordofanian	Bantoid	19
		Mada	Farmer	10.8	14.1	Afro-Asiatic	Chadic	19
		Bakola Pygmy	Hunter-gatherer	2.8	10	Niger-Kordofanian	Bantoid	19
	Chad	Bulala	Farmer (with fishing)	13	18	Nilo-Saharan	Central Sudanic	16
Eastern Africa	Kenya	Boni	Hunter-gatherer	I			I	19
		Borana	Herder	3	38	Afro-Asiatic	Cushitic	19
		Luo	Herder	-0.5	34.5	Nilo-Saharan	Eastern Sudanic	19
		Sengwar	Hunter-gatherer	1	35	Nilo-Saharan	Eastern Sudanic	19
	Tanzania	Datog	Herder	-4.5	35.5	Nilo-Saharan	Eastern Sudanic	19
		Hazda	Hunter-gatherer	-3.5	35.3	Khoesan	Hazda	19
		Iraqw	Mixed farmer	4	35.5	Afro-Asiatic	Cushitic	19
		Sandawe	Hunter-gatherer	-5.5	35.5	Khoesan	Sendawe	18
Western Africa	Nigeria	Yoruba	Farmer	8	4	Niger-Kordofanian	Defoid	19
Saharan Africa	Sudan	Beja	Herder	21	36	Afro-Asiatic	Cushitic	19
Southern African	South Africa	Tswana/Xhosa/ Venda	Farmers/Miners	I		Afrikaans	Afrikaans	91
Study Sample Size								1330

-
- D
-
C
_
_
_
-
\mathbf{O}
\sim
<
2
0
a
lar
lan
lanu
Ĕ
Ĕ
IUS
IUSC
IUS
IUSC
IUSC
IUSC
IUSC

Table 2

Pharmacogenomic diversity and genetic ancestry (top 20 ADME gene variants)

Gene	Variant	CHR	Position	Functional annotation	Alleles ^a	MAF—African ancestry	MAF—European ancestry	Bonferroni P -value b,c
CYP3A	rs4646450	7	99104254	Intron	A/G	0.903	0.168	6.93E-274
CYP2B6	rs34097093	19	46210210	Coding NONS YN R378* (CYP2B6*28)	G/A	0.562	0.002	2.68E-262
CYP3A4	rs2740574	L	99220032	Flanking_5UTR	G/A	0.662	0.033	3.95E-257
GSTA1/2/3/4/5	rs6577	9	52723374	Coding NONSYN E210A	C/A	0.709	0.057	2.51E-250
ABCC1/6	rs246227	16	16043648	Intron	G/A	0.749	0.083	1.06E-244
CYP3A4	rs2242480	L	99199402	Intron	A/G	0.776	0.111	2.92E-231
CYP3A4	rs4646437	L	99203019	Intron	A/G	0.777	0.114	1.43E-229
CYP3A5	rs776746	L	99108475	Intron	A/G	0.744	0.101	3.60E-221
TBXASI	rs4529	L	139308433	Coding NONSYN L357V	C/G	0.478	0.001	1.49E-219
ABCG2	rs2622610	4	89246566	Intron	A/G	0.689	0.077	2.60E-213
CYP3A	rs6945984	Γ	99186264	Flanking_3UTR	G/A	0.769	0.127	3.52E-212
SLC01B3	rs7311358	12	20907027	Coding NONSYN M233I	G/A	0.846	0.193	3.39E-208
CYB5R3	rs137124	22	41345660	Flanking_3UTR	G/A	0.843	0.194	1.29E-206
SLC28A1	rs16974622	15	83265515	Intron	G/A	0.620	0.050	6.25E-203
PPARD	rs6901410	9	35438008	Intron	G/A	0.655	0.073	8.79E-198
ALDH7A1	rs3736171	Ś	125959275	Flanking_5UTR	A/C	0.768	0.145	9.80E-196
ABCA4	rs3789375	1	94237720	Intron	C/A	0.724	0.116	1.80E-194
PPARD	rs6457816	9	35470826	Intron	G/A	0.657	0.077	2.08E-194
ALDH2	rs2238151	12	110696216	Intron	A/G	0.050	0.658	5.15E-193
CYP27A1	rs6436094	2	219395841	Flanking_3UTR	G/A	0.890	0.262	6.52E-191

Pharmacogenomics J. Author manuscript; available in PMC 2015 December 18.

Abbreviations: ADME, absorption, distribution, metabolism, elimination and toxicity; CHR, chromosome; MAF, minor allele frequency; SNP, single-nucleotide polymorphism; UTR, untranslated region.

^aMinor/major.

bCorrected *P*-value (4209 SNPs).

^cStatistics—Fisher's exact test.

Aminkeng et al.

Pharmacogenomic diversity and response to anthracyclines and related substances

Drug response ^d	Gene	Variant	CHR	Position	Functional annotation	Alleles ^b	African ancestry ^c	European ancestry ^c	Bonferroni <i>P</i> -value ^d ,e
TOXICITY/ADR Increased risk of cardiotoxicity and heart failure	UGTIA6 ABCC2 ABCC2 ABCC2 ABCBI ABCBI	rs17863783 rs8187694 rs8187710 rs2235047 rs4148350	2 10 16 16	234267016 101585986 101601284 86976468 16077978	Coding SYNON V209V Coding NONSYNON Coding NONSYN (C1515Y) Intron Intron	A/C T/A A/G C/A	0.120 0.143 0.230 0.182 0.135	0.028 0.054 0.055 0.025 0.054	9.75E-15 2.54E-09 8.87E-31 3.84E-36 3.84E-36 2.09E-07
TOXICITY/ADR Decreased risk of cardiotoxicity and heart failure	RAC2 SULT2BI CBRI HNMT	rs13058338 rs10426377 rs9024 rs17645700	22 19 21	35962716 53784046 36367183 138497402	Intron Intron Flanking_3UTR Flanking_3UTR	T/A A/C A/G G/A	$\begin{array}{c} 0.109\\ 0.175\\ 0.014\\ 0.048\end{array}$	0.250 0.274 0.125 0.202	1.09E-12 4.66E-04 1.73E-19 4.57E-22
DOSAGE Increased likelihood of dose reduction	CYP2B6	rs3745274	19	46204681	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.777	0.250	4.34E-131
EFFICACY increased response	ABCBI	rs2032582	7	86998554	Coding NONSYNON (ABCB1*13 and ABCB1*2)	A/C	0.038	0.451	1.87E-106
Abbreviations: ADR, ac ^a Clinical information fc	dverse drug re	eaction; CH, chr larmacogenomic	omosom s variant	e; SNP, single s were curated	Abbreviations: ADR, adverse drug reaction; CH, chromosome; SNP, single-nucleotide polymorphism; UTR, untranslated region ^a Clinical information for relevant pharmacogenomics variants were curated from PharmGKB, ²⁰ and published studies. ^{22–26}	t, untranslate hed studies.	ed region. 22-26		
b Alleles = minor allele/major allele.	'major allele.								

dCorrected *P*-value (corrected for 4209 SNPs).

 e Statistical test—Fisher's exact test.

^cVariant minor allele frequency (MAF).

Aminkeng et al.

Pharmacogenomic diversity and response to cisplatin and platinum compounds

Drug	Drug response ^a	Gene	Variant	СН	Position	Functional annotation	Alleles ^b	African ancestry ^c	European ancestry ^c	Bonferroni P -value d , e
Cisplatin	TOXICITY/ADR Increased risk of hearing loss (Ototoxicity)	COMT	rs9332377	22	18335692	Intron	A/G	0.327	0.168	5.40E-14
	TOXICITY/ADR Decreased risk of severe neutropenia	XRCCI	rs25487	19	48747566	Coding NONSYN Q399R	A/G	0.148	0.351	3.37E-22
	TOXICITY/ADR Increased likelihood of drug toxicity	MTR	rs1805087	1	235115123	Coding NONSYN D919G	G/A	0.272	0.187	0.0142
	EFFICACY Increased response	MTHFR	rs1801133	-	11778965	Coding NONSYN A222V	A/G	0.069	0.348	2.57E-51
Carboplatin	TOXICITY/ADR Decreased risk of severe neutropenia	XRCCI	rs25487	19	48747566	Coding NONSYN Q399R	A/G	0.148	0.351	3.37E-22
	EFFICACY Increased response	MTHFR	rs1801133	1	11778965	Coding NONSYN A222V	A/G	0.069	0.348	2.57E-51
Oxaliplatin	TOXICITY/ADR Decreased risk of severe neutropenia	XRCCI	rs25487	19	48747566	Coding NONSYN Q399R	A/G	0.148	0.351	3.37E-22
	EFFICACY Increased response	MTHFR	rs1801133	1	11778965	Coding NONSYN A222V	A/G	0.069	0.348	2.57E-51
Abbreviations:	Abbreviations: ADR, adverse drug reaction; CH, chromosome; SNP, single-nucleotide polymorphism.	tion; CH, c	hromosome; S	NP, sin	gle-nucleotide	s polymorphism.				
^a The clinical a	a The clinical annotations of the relevant pharmacogenomics variants were curated from PharmGKB 20 and published studies. 28–30.33	ıt pharmaco	genomics vari:	ants we	re curated fro	m PharmGKB ²⁰ and p	ublished stu	udies.28–30,	33	

Pharmacogenomics J. Author manuscript; available in PMC 2015 December 18.

^dCorrected *P*-value (corrected for 4209 SNPs).

^eStatistical test-Fisher's exact test.

^cVariant minor allele frequency (MAF).

bMinor allele/Major allele.

Table 5

Pharmacogenomic diversity and response to fluorouracil

Drugs	Drug response ^a	Gene	Gene Variant CH Position	СН	Position	Function	Alleles ^b	African ancestry ^c	$\begin{array}{llllllllllllllllllllllllllllllllllll$	Bonferroni <i>P</i> -value ^{d,e}
PYRIMIDINE COMPOUNDS Fluorouracil	TOXICITY/ADR Increased risk of middle-severe nausea and vomiting	DPYD	rs1801265	-	98121473	DPYD rs1801265 1 98121473 Coding NONSYN G/A r29c (DPYD*9A)	G/A	0.489	0.222	4.46E-35
	TOXICITY/ADR Increased risk of severe toxicity	DPYD	rs2297595	-	97937679	DPYD rs2297595 1 97937679 Coding NONSYN M166V	G/A	0.197	0.102	1.32E-06
	EFFICACY Increased response	MTHFR	rs1801133	-	11778965	MTHFR rs1801133 1 11778965 Coding NONSYN A222V	A/G	0.069	0.348	2.57E-51

-nucleotide polymorphism. ome; SNP, single-Abbreviations: ADK, adverse drug reaction; CH, chrom

 $a_{\rm T}$ The clinical annotations of the relevant pharmacogenomics variants were curated from PharmGKB²⁰ and published studies. 31-33,56,57

 b Minor allele/Major allele.

^cVariant minor allele frequency (MAF).

^dCorrected *P*-value (corrected for 4209 SNPs).

^eStatistical test—Fisher's exact test.

Pharmacogenomic diversity and response to vincristine

Drug response ^a	Gene	Variant	СН	Position	Function	Alleles ^b	African ancestry ^c	European ancestry ^c	Bonferroni <i>P</i> -value ^d ,e
TOXICITY/ADR Increased risk of drug toxicity	MTHFR	rs1801133	-	11778965	Coding NONS YN A222V	A/G	0.069	0.348	2.57E-51
TOXICITY/ADR Decreased IQ	SON	rs1799983	7	150327044	150327044 Coding NONSYN D298E	A/C	0.049	0.338	8.47E-012
EFFICACY Improved Response	ABCB1	rs2032582	7	86998554	Coding NONS YNON (ABCB1*13 and ABCB1*2)	A/C	0.038	0.451	1.87E-106
DRUG RESPONSE PATHWAY Vincristine main metabolic substrate	CYP3A5 CYP3A5 CYP3A5	rs776746 rs10224569 rs10264272	てて	99108475 99086240 99100771	Intron (CYP3A5*3) Intron Coding SYNON K208K (CYP3A5*6)	A/G A/G A/G	0.744 0.284 0.223	$\begin{array}{c} 0.101 \\ 0 \\ 0.003 \end{array}$	3.60E-221 2.39E-121 2.44E-83
	CYP3A5 CYP3A5 CYP3A5 CYP3A5	rs10249369 rs41303343 rs6956305	~~~	99084928 99088358 99079246	Intron Coding FRAMESHIFT Flanking_3UTR	G/A A/T G/A	$\begin{array}{c} 0.219 \\ 0.076 \\ 0.091 \end{array}$	0.006 0.001 0.044	1.02E-75 2.59E-25 0.0443
Abbreviations: ADR, adv The clinical annotations	verse drug re	action; CH, chi ant pharmacog	romosol enomics	me; IQ, intelli, s variants were	Abbreviations: ADR, adverse drug reaction; CH, chromosome; IQ, intelligence quotient; SNP, single-nucleotide polymorphism; UTR, untranslated region ^a The clinical annotations of the relevant pharmacogenomics variants were curated from PharmGKB ²⁰ and published studies. 26,35,36,49–51	eotide poly d published	morphism; U ⁷ studies. ^{26,35}	FR, untranslat ,36,49–51	ed region.

^bMinor allele/major allele.

Pharmacogenomics J. Author manuscript; available in PMC 2015 December 18.

^cVariant minor allele frequency (MAF).

dCorrected *P*-value (corrected for 4209 SNPs).

 e Statistical test—Fisher's exact test.

Table 7

Pharmacogenomic diversity and response to antiretroviral and antimycobacterial drugs

Drug	Drug response ^a	Gene	Variant	С	Position	Functional annotation	Sq^{b}	African ancestry ^c	European ancestry ^c	Bonferroni P-value ^d
Nucleoside re	Nucleoside reverse-transcriptase inhibitors	tors								
Tenofovir	Increased risk of proximal tubulopathy and risk of kidney tubular dysfunction	ABCC2 ABCC2	rs717620 rs17222723	10	101532568 101585986	Flanking_5UTR Coding NONSYNON	G/A T/A	0.968 0.143	0.802 0.055	4.54E-28 5.94E-09
	Increased risk of proximal tubulopathy	ABCC4	rs1751034	13	94512977	Coding FRAMESHIFT	G/A	0.310	0.178	4.77E-09
Nonnucleosid	Nonnucleoside reverse-transcriptase inhibitors	hibitors								
Nevirapine	Increased risk of hepatotoxicity	CYP2B6	rs28399499	19	46210061	Coding NONSYN 1328T (CYP2B6* 16/*18)	G/A	0.052	0.0005	7.04E-17
Efavirenz	Increase in HDL- cholesterol levels	CYP2B6	rs3745274	19	46204681	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.777	0.250	4.34E-131
	Increased risk of neurotoxicity, CNS depression and neuropsychiatric disorders	CYP2B6	rs3745274	19	46204681	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.777	0.250	4.34E-131
	Increased risk of fatigue and sleep disorder	CYP2B6	rs3745274	19	46204681	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.777	0.250	4.34E-131
	Increased risk of hepatotoxicity and drug-induced liver injury	CYP2B6	rs3745274	19	46204681	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.777	0.250	4.34E-131
Protease inhibitors	bitors									
Ritonavir	Increased risk of extreme hypertriglyceridemia	APOE	rs429358	19	50103781	Coding NONSYN C130R	G/A	0.249	0.133	5.75E-08
Antituberculosis therapy	sis therapy									
Rifampicin	Increased risk of hepatotoxicity and drug-induced liver injury (DILI)	CYP2B6	<i>CYP2B6</i> rs3745274	19	46204681	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.777	0.250	4.34E-131

Pharmacogenomics J. Author manuscript; available in PMC 2015 December 18.

Abbreviations: C, chromosome; CNS, central nervous system; DILI, drug-induced liver injury; HDL, high-density lipoprotein; MAF, minor allele frequency

Manuscript

Author Manuscript

 $^{\alpha} Clinical annotation curated from PharmGKB^{20} and http://www.hiv-pharmacogenomics.org.^{21}$

 $b_{
m Sq.}$ sequence (minor/major).

^cMAF.

 $d_{P-value}$ corrected for 4209.

Table 8

Distribution of clinically associated pharmacogenomic variants in African populations (clinically annotated variants that show significant pharmcogenetic diversity across all African populations)

WarfarinDosageVKORCIrs729416 31009822 $flanking_3UTR$ 34.6 CyclophosphamideToxicity/ADR $CYP2B6$ $rs779343$ 19 46207103 $Coding$ NONSYN K262R (CYP2B6*6) 34.3 CyclosporineDosage $CYP3A5$ $rs776746$ 7 99108475 Intron 17.7 WarfarinDosage $CYP3A5$ $rs776746$ 7 99108475 Intron 17.7 WarfarinDosage $CYP3A5$ $rs776746$ 7 99108475 Intron 13.7 ThiotepaDove $CYP3A5$ $rs776746$ 7 99108475 Intron 13.7 ThiotepaDosage $CYP3A5$ $rs1138272$ 11 67110155 Coding NONSYNON A114V 14.3 ThiotepaDrug clearance $GSTP1$ $rs1138272$ 11 67110155 Coding NONSYNON A114V 14.3 Cisplatin,Toxicity/ADR $ERCCI$ $rs11615$ 19 50615493 Coding SYNON N118N 10.7 CyclophosphamidePlasma $SLCO1B1$ $rs2306283$ 12 21221005 Coding NONSYNON 8.0 CyclophosphamideToxicity/ADR $CYP2B6$ $rs8192709$ 19 46189114 Coding NONSYNON 9.6	Dosage VKORCI rs7294 16 31009822 sphamide Toxicity/ADR $CYP2B6$ rs2779343 19 46207103 rine Dosage $CYP3A5$ rs2779343 19 46207103 rine Dosage $CYP3A5$ rs776746 7 99108475 Dosage $VKORCI$ rs8050894 16 31012010 Drug clearance $GSTPI$ rs1138272 11 67110155 Drug clearance $GSTPI$ rs11615 19 50615493 sphamide Toxicity/ADR $ERCCI$ rs11615 19 50615493 sphamide Toxicity/ADR $ERCCI$ rs11615 19 50615493 sphamide Toxicity/ADR $ERCCI$ rs2106283 12 21221005 sphamide Toxicity/ADR $CYP2B6$ rs2306283 12 21221005 sphamide Toxicity/ADR $CYP2B6$ rs8192709 19 46189114	F-statistic ⁶	F-statistic Bonferroni P-value ^d
sphamideToxicity/ADR $CYP2B6$ $rs2279343$ 19 46207103 Coding NONSYN K262R (CYP2B6*6)rineDosage $CYP3A5$ $rs776746$ 799108475IntronDosage $VKORCI$ $rs8776746$ 799108475IntronDosage $VKORCI$ $rs8050894$ 1631012010IntronDrug clearance $GSTP1$ $rs1138272$ 11 67110155 Coding NONSYNON A114VToxicity/ADR $ERCCI$ $rs1138272$ 11 67110155 Coding SYNON N118NsphamidePlasma $SLCO1B1$ $rs2306283$ 12 21221005 Coding NONSYNONsphamideToxicity/ADR $CVP2B6$ $rs8192709$ 19 4189114 $Coding NONSYNONsphamideToxicity/ADRCVP2B6rs8192709194189114Coding NONSYNON$	sphamide Toxicity/ADR $CYP2B6$ rs279343 19 46207103 rine Dosage $CYP3A5$ $rs776746$ 7 99108475 Dosage $CYP3A5$ $rs776746$ 7 99108475 Dosage $VKORCI$ $rs8050894$ 16 31012010 Drug clearance $GSTP1$ $rs1138272$ 11 67110155 Drug clearance $GSTP1$ $rs1138272$ 11 67110155 Toxicity/ADR $ERCC1$ $rs11615$ 19 50615493 sphamide $Toxicity/ADR$ $ERCC1$ $rs11615$ 19 50615493 de Plasma $SLCO1B1$ $rs2306283$ 12 21221005 de Plasma $SLCO1B1$ $rs2306283$ 12 21221005 sphamide Toxicity/ADR $CYP2B6$ $rs8192709$ 19 46189114	R 34.655	8.93E-21
rineDosage $CYP3A5$ $r_s776746$ 799108475IntronDosage $VKORCI$ $r_s8050894$ 1631012010IntronDrug clearance $GSTPI$ $r_{s1138272$ 11 67110155 Coding NONSYNON A114VDrug clearance $GSTPI$ $r_{s116155}$ 19 50615493 Coding NONSYNON A114VresphamideToxicity/ADR $ERCCI$ $r_{s116155}$ 19 50615493 Coding SYNON N118NsphamidePlasma $SLCO1BI$ $r_{s2306283}$ 12 21221005 Coding NONSYNONsphamidePlasma $SLCO1BI$ $r_{s2306283}$ 12 21221005 Coding NONSYNONsphamideToxicity/ADR $CYP2B6$ $r_{s8192709}$ 19 4189114 Coding NONSYNON R22C	rine Dosage CYP3A5 rs776746 7 99108475 Dosage VKORCI rs8050894 16 31012010 Drug clearance GSTP1 rs1138272 11 67110155 Drug clearance GSTP1 rs11615 19 50615493 result FRCC1 rs11615 19 50615493 result ERCC1 rs11615 19 50615493 sphamide Pasma SLCO1B1 rs2306283 12 21221005 de Plasma SLCO1B1 rs2306283 12 21221005 sphamide Toxicity/ADR CYP2B6 rs8192709 19 46189114	YN K262R (CYP2B6*6) 34.374	1.46E-20
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Dosage VKORCI rs8050894 16 31012010 Drug clearance G5TP1 rs1138272 11 67110155 Toxicity/ADR ERCC1 rs11615 19 50615493 sphamide rs2306283 12 21221005 de Plasma SLCO1B1 rs2306283 12 21221005 sphamide Toxicity/ADR CYP2B6 rs8192709 19 46189114	17.760	1.14E-09
Drug clearance <i>GSTP1</i> rs1138272 11 67110155 Coding NONSYNON A114V 1 r Toxicity/ADR <i>ERCC1</i> rs11615 19 50615493 Coding SYNON N118N 1 sphamide sphamide 12 21221005 Coding NONSYNON 1 1 de Plasma <i>SLCO1B1</i> rs2306283 12 21221005 Coding NONSYNON 1 sphamide roncentration 12 21221005 Coding NONSYNON 1	Drug clearance <i>GSTP1</i> rs1138272 11 67110155 Toxicity/ADR <i>ERCC1</i> rs11615 19 50615493 sphamide solution 19 50615493 de Plasma <i>SLC01B1</i> rs2306283 12 21221005 sphamide Toxicity/ADR <i>CYP2B6</i> rs8192709 19 46189114	13.714	8.92E-07
Toxicity/ADRERCC1rs116151950615493Coding SYNON N118N1PlasmaSLC01B1rs23062831221221005Coding NONSYNONconcentrationToxicity/ADRCYP2B6rs81927091946189114Coding NONSYNON R22C	Toxicity/ADR ERCC1 rs11615 19 50615493 Plasma SLCO1B1 rs2306283 12 21221005 concentration SLCO1B1 rs2306283 12 21221005 Toxicity/ADR CYP2B6 rs8192709 19 46189114	YNON A114V 14.343	3.49E-05
Plasma <i>SLCO1B1</i> rs2306283 12 21221005 Coding NONSYNON concentration Toxicity/ADR <i>CYP2B6</i> rs8192709 19 46189114 Coding NONSYNON R22C	Plasma SLCOIB1 rs2306283 12 21221005 concentration 1221005 concentration	0N N118N 10.730	0.0040
Plasma SLCOIB1 rs2306283 12 21221005 Coding NONSYNON concentration Toxicity/ADR CYP2B6 rs8192709 19 46189114 Coding NONSYNON R22C	Plasma SLCO1B1 rs2306283 12 21221005 concentration Toxicity/ADR CYP2B6 rs8192709 19 46189114		
Toxicity/ADR CYP2B6 rs8192709 19 46189114 Coding NONSYNON R22C	Toxicity/ADR <i>CYP2B6</i> rs8192709 19 46189114	YNON 8.034	0.0139
(CYP2B6*2 and *10)		XNON R22C 9.654 nd *10)	0.0167
	a The clinical annotations of the relevant pharmacogenomics variants were curated from PharmGKB, 20 and public	nd published studies.	
a The clinical annotations of the relevant pharmacogenomics variants were curated from PharmGKB, 20 and published studies.	b Statistical test = ANOVA F-test.		

^cCorrected *P*-value (corrected for 4209 SNPs).

Author Manuscript

Pharmacogenomic diversity in African populations

Drug	Drug response ^a	Gene	Variant	Functional annotation	^d bS	Central Africans	Eastern Africans	Saharan Africans	Southern Africans	Western Africans
Anthracyclines a	Anthracyclines and related substances									
Anthracycline	Increased risk of cardiotoxicity and heart failure	UGTIA6 ABCC2 ABCBI ABCC1/6	rs17863783 rs8187710 rs2235047 rs4148350	Coding SYNON V209V Coding NONSYN (C1515Y) Intron Intron	A/C A/C A/C	$\begin{array}{c} 0.090\\ 0.213\\ 0.139\\ 0.169\end{array}$	$\begin{array}{c} 0.128\\ 0.257\\ 0.178\\ 0.122\end{array}$	0.184 0.237 0.211 0.053	0.129 0.200 0.213 0.135	0.088 0.219 0.235 0.176
	Decreased risk of cardiotoxicity and heart failure	RAC2 SULT2BI CBRI HNMT	rs13058338 rs10426377 rs9024 rs17645700	Intron Intron Flanking_3UTR Flanking_3UTR	T/A A/C A/G G/A	0.108 0.223 0.000 0.066	$\begin{array}{c} 0.134\\ 0.158\\ 0.013\\ 0.044 \end{array}$	0.132 0.211 0.053 0.000	$\begin{array}{c} 0.079 \\ 0.146 \\ 0.017 \\ 0.056 \end{array}$	0.029 0.206 0.029 0.000
	Increased likelihood of dose reduction	CYP2B6	rs3745274	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.783	0.748	0.658	0.837	0.824
	Increased response	ABCBI	rs2032582	Coding NONSYNON (ABCB1*13 and ABCB1*2)	A/C	0.036	0.034	0.026	0.045	0.059
Platinum compounds	spun									
Cisplatin	Increased risk of hearing loss (ototoxicity)	COMT	rs9332377	Intron	A/G	0.323	0.352	0.237	0.330	0.206
	Decreased risk of severe neutropenia	XRCC1	rs25487	Coding NONSYN Q399R	A/G	0.193	0.128	0.211	0.135	0.118
	Increased likelihood of drug toxicity	MTR	rs1805087	Coding NONSYN D919G	G/A	0.295	0.262	0.132	0.287	0.324
	Increased response	MTHFR	rs1801133	Coding NONSYN A222V	A/G	0.048	0.060	0.132	060.0	0.059
Carboplatin	Decreased risk of severe neutropenia	XRCC1	rs25487	Coding NONSYN Q399R	A/G	0.193	0.128	0.211	0.135	0.118
	Increased response	MTHFR	rs1801133	Coding NONSYN A222V	A/G	0.048	0.060	0.132	060.0	0.059
Oxaliplatin	Decreased risk of severe neutropenia Increased response	XRCC1 MTHFR	rs25487 rs1801133	Coding NONSYN Q399R Coding NONSYN A222V	A/G A/G	$0.193 \\ 0.048$	0.128 0.060	0.211 0.132	0.135 0.090	0.118 0.059
Antimetabolites										
PYRIMIDINE COMPOUNDS Fluorouracil	Increased risk of toxicity of fluoropyrimidine- based chemotherapy	DPYD DPYD	rs1801265 rs2297595	Coding NONSYN R29C (DPYD*9A.) Coding NONSYN M166V	G/A G/A	0.452 0.253	$0.550 \\ 0.141$	$0.579 \\ 0.079$	0.381 0.275	0.529 0.147

Drug	Drug response ^d	Gene	Variant	Functional annotation	$^{\prime}$ $^{\prime}$ $^{\prime}$ $^{\prime}$	Central Africans	Eastern Africans	Saharan Africans	Southern Africans	Western Africans
	Increased response	MTHFR	rs1801133	Coding NONSYN A222V	A/G	0.048	0.060	0.132	060.0	0.059
Vincristine Vincristine	Increased risk of drug toxicity	MTHFR	rs1801133	Coding NONSYN A222V	A/G	0.048	0.060	0.132	060.0	0.059
	Improved response	ABCBI	rs2032582	Coding NONSYNON (ABCB1*13 and ABCB1*2)	A/C	0.036	0.034	0.026	0.045	0.059
	Vincristine main metabolic substrate	CYP3A5 CYP3A5 CYP3A5	rs776746 rs10224569 rs10264272	Intron (CYP3A5*3) Intron Coding SYNON K208K	A/G A/G	0.771 0.367 0.283	0.799 0.260 0.209	0.684 0.316 0.289	0.685 0.264 0.191	0.500 0.147 0.147
		CYP3A5 CYP3A5 CYP3A5	rs10249369 rs41303343 rs6956305	Intron Intron Coding FRAMESHIFT Flanking_3UTR	G/A A/T G/A	0.277 0.036 0.066	$\begin{array}{c} 0.205 \\ 0.111 \\ 0.117 \end{array}$	$\begin{array}{c} 0.263 \\ 0.079 \\ 0.079 \end{array}$	0.193 0.062 0.079	$\begin{array}{c} 0.147 \\ 0.029 \\ 0.059 \end{array}$
Nucleoside reven	Nucleoside reverse-transcriptase inhibitors									
Tenofovir	Increased risk of proximal tubulopathy and risk of kidney tubular dysfunction	ABCC2 ABCC2	гs717620 гs17222723	Flanking_5UTR Coding NONSYNON	G/A T/A	0.957 0.151	0.990 0.138	0.974 0.211	0.944 0.135	0.941 0.118
	Increased risk of proximal tubulopathy	ABCC4	rs1751034	Coding FRAMESHIFT	G/A	0.325	0.305	0.237	0.292	0.441
Nonnucleoside r	Nonnucleoside reverse-transcriptase inhibitors									
Nevirapine	Increased risk of hepatotoxicity	CYP2B6	rs28399499	Coding NONSYN I328T (CYP2B6*16/*18)	G/A	0.012	0.067	0.000	0.080	0.029
Efavirenz	Increase in HDL- cholesterol levels	CYP2B6	rs3745274	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.783	0.748	0.658	0.837	0.824
	Increased risk of neurotoxicity, CNS depression and neuropsychiatric disorders	CYP2B6	rs3745274	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.783	0.748	0.658	0.837	0.824
	Increased risk of fatigue and sleep disorder	CYP2B6	rs3745274	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.783	0.748	0.658	0.837	0.824
	Increased risk of hepatotoxicity and drug- induced liver injury	CYP2B6	rs3745274	Coding NONSYN Q172H (CYP2B6*6)	A/C	0.783	0.748	0.658	0.837	0.824
Protease Inhibitors	lors									

Ritonavir

Drug

	hypertriglycendemia									
Antituberculosis therapy	therapy									
Rifampicin	Increased risk of hepatotoxicity and drug- induced liver injury	CYP2B6	rs3745274	Coding NONSYN Q172H (CYP2B6*6)	A/C	A/C 0.783	0.748	0.748 0.658	0.837 0.824	0.824

Abbreviations: CNS, central nervous system; HDL, high-density lipoprotein; UTR, untranslated region.

^dClinical annotation curated from PharmGKB,²⁰ http://www.hiv-pharmacogenomics.org and published studies.

bSq, sequence (minor/major).